Langsung ke konten utama

Cara Mudah Menentukan Tanda pada Garis Bilangan dalam Menyelesaikan Pertidaksamaan - Tips Marthen Kanginan


Dalam menyelesaikan suatu pertidaksamaan, membuat garis bilangan adalah salah satu tahapan yang perlu kita lakukan, terutama jika pertidaksamaan tersebut memiliki beberapa titik kritis atau pembuat nol seperti pertidaksamaan polynomial atau pertidaksamaan rasional . Secara umum, berikut inilah tahapan-tahapan dalam menyelesaikan pertidaksamaan:
  1. Jadikan ruas kanan pertidaksamaan bernilai $0$
  2. Faktorkan / tentukan titik kritis (pembuat nol)
  3. Buat garis bilangan
  4. Tentukan tanda $+$ atau $-$ setiap interval pada garis bilangan
  5. Tentukan himpunan penyelesaian.

Untuk pertidaksamaan linear dan pertidaksamaan kuadrat, masih dapat dengan mudah kita selesaikan bahkan tanpa membuat garis bilangan. Namun untuk pertidaksamaan yang memuat beberpa faktor atau memiliki banyak titik kritis, membuat garis bilangan menjadi hal yang perlu untuk kita lakukan dalam menentukan himpunan penyelesaian, seperti pertidaksamaan berikut ini:

$\displaystyle x^2 \left(2x-3\right)^3 \left(x-3\right)^2 \left(2x-7\right)\lt 0$

Pertidaksamaan di atas, memiliki $4$ titik kritis, yaitu $x=0$, $x=\frac{3}{2}$, $x=3$ dan $x=\frac{7}{2}$, sehingga jika kita buat garis bilangannya sebagai berikut:

Seperti kita lihat pada garis bilangan di atas, $4$ titik kritis menyebabkan terbentuknya lima buah interval (daerah) yang perlu kita uji tanda pada masing-masing interval apakah $+$ atau $-$. Jika kita lakukan pengujian dengan mengambil sembarang titik uji pada masing-masing interval, misalnya pada interval I $(x\lt 0)$ kita ambil $x=-1$ sebagai titik uji, pada interval II $(0\lt x\lt \frac{3}{2})$ kita ambil $x=1$ sebagai titik uji, bagaimana dengan interval IV $\left( 3\lt x\lt \frac{7}{2}\right)$? tentunya kita tidak bisa mengambil $x$ bilangan bulat sebagai titik uji, tentu ini akan cukup "merepotkan". Berikut ini tips cara mudah menentukan tanda $+$ atau $-$ pada garis bilangan tanpa menggunakan titik uji.

  Tips Marthen Kanginan

Bagi yang berkecimpung di "dunia" matematika dan fisika pasti sudah tidak asing dengan nama Marthen Kanginan, sudah banyak buku karya beliau yang beredar dan memberikan kontribusi yang sangat besar untuk pendidikan di negeri ini, sama halnya seperti penulis besar lainnya seperti Pak Sukino (salah satu ide kreatif pak Sukino adalah Horner-Kino ), Pak Suwah Sembiring, Pak Husein Tampomas dan penulis lainnya yang sudah memberikan ide dan karya luar biasa untuk kita manfaatkan, semoga kesehatan selalu menyertai beliau semua (saya rekomendasikan anda membeli buku karya-karya beliau, InsyaAlloh sangat bermanfaat).


Salah satu tips yang di berikan pak Marthen Kanginan adalah bagaimana cara mudah menentukan tanda $+$ atau $-$ pada garis bilangan dalam menyelesaiakan pertidaksamaan tanpa menggunkan titik uji. Berikut ini langkah-langkah tips Marthen Kanginan :





   Tips Marthen Kanginan

Cara mudah menentukan tanda pada garis bilangan dengan langkah-langkah sebagai berikut:

  Tentukan tanda pada daerah paling kanan hanya dengan mengalikan koefisien $x$ dari tiap-tiap fakor


Untuk daerah (interval lainnya), gunakan aturan sebagai berikut: "ketika melewati titik kritis, tanda bergantian kecuali ketika melewati titik kritis yang berasal dari $x^2$ atau $(ax+b)^2$ atau $(ax+b)^n$ dengan $n$ genap maka tanda tetap.






Sebagai contoh, kita akan menyelesaikan pertidaksamaan yang tadi, sebagai berikut:



$\displaystyle x^2 \left(2x-3\right)^3 \left(x-3\right)^2 \left(2x-7\right)\lt 0$



Dari pertidaksamaan di atas, kita peroleh titik kritis $x=0$, $x=\frac{3}{2}$, $x=3$ dan $x=\frac{7}{2}$, maka garis bilangannya sebagai berikut:



Langkah pertama dari tips Marthen Kanginan adalah kita tentukan tanda pada interval paling kanan, dalam soal ini berarti interval V. Tanda pada interval paling kanan ditentukan oleh koefisien dari masing-masing variable $x$ setiap faktor. Maka kita peroleh:

$(x^2)(2x)(x)(2x)=$ Positif

Maka daerah paling kanan bernilai positif $(+)$

Berikutnya, kita tentukan tanda pada interval lainnya dengan aturan jika melewati titik kritis yang berasal dari faktor berpangkat genap, maka tanda tetap

Pada pertidaksamaan di atas,

$\frac{7}{2}$ berasal dari $(2x-7)$ (pangkat ganjil) maka ketika melewati $\frac{7}{2}$ tanda berubah
$3$ berasal dari $(x-3)^2$ (pangkat genap) maka ketika melewati $3$ tanda tetap
$\frac{3}{2}$ berasal dari $(2x-3)^3$ (pangkat ganjil) maka ketika melewati $\frac{3}{2}$ tanda berubah
$0$ berasal dari $x^2$ (pangkat genap), maka ketika melewati $0$ tanda tetap

untuk lebih jelasnya perhatikan garis bilangan berikut

Maka penyelesaian pertidaksamaan $x^2(2x-3)^3(x-3)^2(2x-7)\lt 0 $ adalah daerah dengan tanda negatif karena pertidaksamaan memiliki tanda $\lt 0$ (negatif), maka penyelesaiannya seperti ditunjukkan oleh gambar berikut:

Yaitu: $\displaystyle\frac{3}{2}\lt x\lt 3$ atau $\displaystyle 3\lt x\lt\frac{7}{2}$


Untuk lebih jelas, perhatikan beberapa contoh lain berikut ini:

Contoh 1

Tentukan penyelesaian dari pertidaksamaan $(x-1)(x-2)^2(x-3)^3(x-4)\leq 0$

Jawab:

Titik kritis pertidaksamaan di atas adalah $x=1$, $x=2$, $x=3$, dan $x=4$. Interval paling kanan positif, titik kritis yang berasal dari faktor dengan pangkat genap adalah $x=2$, dengan demikian tanda tidak berubah ketika melewati $x=2$ maka garis bilangannya adalah:

Bulatan pada garis bilangan "penuh/berisi" karena, tanda pada pertidaksamaan $\leq 0$ memuat tanda sama dengan, artinya titik kritis termasuk penyelesaian. Jadi, penyelesaian dari pertidaksamaan $(x-1)(x-2)^2(x-3)^3(x-4)\leq 0$ adalah $x\leq 1$ atau $3\leq x\leq 4$


Contoh 2

Tentukan penyelesaian dari $\displaystyle\frac{(x-1)(x-2)^3}{(x-3)^2(x-4)}\geq 0$

Jawab:

Titik kritis pertidaksamaan di atas adalah $x=1$, $x=2$, $x=3$ dan $x=4$. Tanda pada interval paling kanan positif, karena koefisien semua variabel $x$ positif. Titik kritis yang berasal dari faktor pangkat genap adalah $x=3$, dengan demikian tanda tidak berubah ketika melewati $x=3$.

Meskipun tanda pada pertidaksamaan memuat sama dengan $(\geq 0)$, namun untuk titik kritis yang berasal dari penyebut diberi "bulatan kosong", artinya titik kritis tersebut tidak termasuk penyelesaian.

Jadi, penyelesaian dari pertidaksamaan $\displaystyle\frac{(x-1)(x-2)^3}{(x-3)^2(x-4)}\geq 0$ adalah $1\leq x\leq 2$ atau $x\gt 4$



Contoh 3

Tentukan penyelesaian dari pertidaksamaan $x^2(2x^2-x)\lt x^2(2x+5)$  

Jawab:

\begin{align*}x^2(2x^2-x)-x^2(2x+5)&\lt 0\\ x^2((2x^2-x)-(2x+5))&\lt 0\\x^2(2x^2-3x-5 )&\lt 0\\x^2(2x-5)(x+1)&\lt 0\end{align*}

Titik kritis $x=0$, $x=\frac{5}{2}$ dan $x=-1$. Tanda pada interval paling kanan positif. Titik kritis yang berasal dari faktor dengan pangkat genap adalah $x=0$, maka ketika melewati $x=0$ tanda tidak berubah.


Jadi, penyelesaian dari pertidaksamaan $x^2(2x^2-x)\lt x^2(2x+5)$ adalah $-1\lt x\lt 0$ atau $0\lt x\lt \frac{5}{2}$

Jika anda masih belum paham, sebaiknya lihat video pembahasannya disini

Demikianlah cara mudah menentukan tanda $+$ atau $-$ garis bilangan dengan tips Marthen Kanginan. Semoga bermanfaat.

Untuk latihan pertidaksamaan secara online bisa anda coba soal berikut ini

Sumber https://www.m4th-lab.net/

Komentar

Postingan populer dari blog ini

Silabus SMK Kurikulum 2013 Revisi 2017 Lengkap KI dan KD

Silabus SMK Kurikulum 2013 Revisi 2017 Lengkap KI dan KD | SMK merupakan Sekolah menengah Kejuruan memiliki mata pelajaran khusus yang di berikan kepada masing-masing peserta didiknya. Mata pelajaran khusus ini di berikan berdasarkan jurusan yang pilih oleh peserta didik. SMK mampu membangun peserta didik menjadi pelaku usaha mandiri dan pelaku pekerjaan yang memiliki kemampuan mandiri. Berbagai program keahlian yang ada di SMK untuk mengembangkan minat peserta didik siap menghadapi kehidupan dimasa mendatang. Silahkan Download Silabus TKJ Kurikulum 2013 Revisi 2017 berikut: Silabus C2 (Dasar Program Keahlian) Silabus Sistem Komputer Silabus Komputer dan Jaringan Dasar Silabus Pemrograman Dasar Silabus Dasar Desain Grafis Silabus C3 (Kompetensi Keahlian) Silabus Teknologi WAN Silabus Administrasi Infratruktur Jaringan Silabus Administrasi Sistem Jaringan Silabus Teknologi Layanan Jaringan Silabus Produk Kreatif dan Kewirausahaan Kompetensi Inti dan Kompe...

Download Buku Guru dan Siswa SD/MI Kelas 1 Kurikulum 2013 Revisi 2017

Download Buku Guru dan Siswa SD/MI Kelas 1 Kurikulum 2013 Revisi 2017 | Pada satu sisi perkembangan teknologi memberikan dampak positif pada dunia pendidikan. Diantara dampak positif yang harus dimanfaatkan oleh guru adanya Buku Sekolah Elekronik. Buku sekolah elektronik merupakan buku yang dapat disimpan dalam media penyimpanan seperti flashdiks, komputer dan hape android. Buku sekolah elektronik memberikan andil cukup luar biasa. Seorang guru atau siswa bisa membawa  ratusan ribu buku di dalam hape androidnya. Berikut admin share buku sekolah elektronik dalam bentuk file pdf yang dapat dibuka menggunakan komputer atau pu menggunakan hape android. Download Buku Guru SD/MI Kelas 1 Kurikulum 2013 Revisi 2017 Kelas_01_SD_Tematik_1_Diriku_Guru_2017 Download disini Kelas_01_SD_Tematik_2_Kegemaranku_Guru_2017 download disini Kelas 1 SD Tematik 3 Kegiatanku Guru 2017 download disini Kelas_01_SD_Tematik_4_Keluargaku_Guru_2017 download disini Kelas 1 SD Temat...

Tafsir Al-Qur'an Online Bahasa Indonesia Lengkap

- Al-Qur'an merupakan kitab suci umat muslim diseluruh dunia. Kita suci ini menjadi pedoman bagi kita semua dalam menjalankan kehidupan di dunia agar tetap dalam Jalan Allah SWT yang tentunya menuntun kita untuk kehidupan yang kekal setelah kehidupan ini. Seperti yang kita ketahui, bahwasanya Kitab Suci Al-Qur'an menggunakan bahasa arab, sehingga banyak diantara kita bisa membaca Al-Qur'an namun tidak mengetahui dan memahami seluruh arti atau tafsir dari Al-Qur'an. Padahal, jika kita membaca Al-Qur'an dengan mengetahui dan memahami maknanya (tafsirnya) tentu hal ini sangat bagus untuk kita semua. Nah, untuk mempelajari Tafsir Al-Qur'an tidaklah susah. Kita dapat mempelajarinya dengan memiliki Al-Qur'an yang dilengkapi dengan tarsifrannya secara lengkap. Seiring perkembangan zaman, Tafsir Al-Qur'an tidak hanya tersedia dalam bentuk cetak, tetapi saat ini juga tersedia dalam digital online. Ya, Tafsir Al-Qur'an Online Bahasa Indonesia kini lebih m...